8,500 research outputs found

    Comparison of the tetrahedron method to smearing methods for the electronic density of states

    Get PDF
    The electronic density of states (DOS) highlights fundamental properties of materials that oftentimes dictate their properties, such as the band gap and Van Hove singularities. In this short note, we discuss how sharp features of the density of states can be obscured by smearing methods (such as the Gaussian and Fermi smearing methods) when calculating the DOS. While the common approach to reach a "converged" density of states of a material is to increase the discrete k-point mesh density, we show that the DOS calculated by smearing methods can appear to converge but not to the correct DOS. Employing the tetrahedron method for Brillouin zone integration resolves key features of the density of states far better than smearing methods

    Uncertainty in geometry of fibre preforms manufactured with Automated Dry Fibre Placement (ADFP) and its effects on permeability

    Get PDF
    Resin transfer moulding is one of several processes available for manufacturing fibre-reinforced composites from dry fibre reinforcement. Recently, dry reinforcements made with Automated Dry Fibre Placement have been introduced into the aerospace industry. Typically, the permeability of the reinforcement is assumed to be constant throughout the dry preform geometry whereas in reality it possesses inevitable uncertainty due to variability in geometry. This uncertainty propagates to the uncertainty of the mould filling and the fill time, one of the important variables in resin injection. It makes characterisation of the permeability and its variability an important task for design of the resin transfer moulding process. In this study, variability of the geometry of a reinforcement manufactured using Automated Dry Fibre Placement is studied. Permeability of the manufactured preforms is measured experimentally and compared to stochastic simulations based on an analytical model and a stochastic geometry model. The simulations showed that difference between the actual geometry and the designed geometry can result in 50% reduction of the permeability. The stochastic geometry model predicts results within 20% of the experimental values

    PCR-based detection and genetic characterization of porcine parvoviruses in South Korea in 2018

    Get PDF
    with the advantage of sequencing technology, many novel porcine parvoviruses (PPV) rather than PPV1 has been reported. This study ultilized specific PCR- based method and gene- based analysis to study the presence and genetic diversity of porcine parvoviruses in South Korea in 2018. The present study was conducted in 2018 and found PPV1 and PPV7 in nine out of 151 field samples (organs and semen) by the PCR method. Among these, the complete genome sequences of five strains (N2, N91, N108, N133, and N141) were recovered. Phylogenic analysis revealed that the strains N2, N91, and N108 belong to the PPV1 genotype, while N133 and N141 belong to PPV7 genotype. The PPV7 strains collected in this study had deletion mutations in the VP2 gene but differed from that of PPV7 strains collected in 2017. Among the PPV1 strains, the amino acid variations in the B cell epitopes of the VP2 protein were observed between three Korean PPV1 field strains (N2, N91, and N108) and the reference PPV1 strains. Those substitutions resulted in six out of 12 predicted epitopes having significant differences in antigenic index compared to the other PPV1 strains. This study confirmed the presence of different genotypes of porcine parvoviruses in South Korea. The PPVs circulating in South Korea were phylogenetically classified as PPV1 and PPV7 genotypes. Three Korean PPV1 strains collected in 2018 were predicted to have antigenic alteration in VP2 compared to several reference strains of PPV1.This study was supported by Boehringer Ingelheim Vetmedica Korea Ltd. (Grant no. 20180002). The funder had no role in this study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Sheet metal plate design: a structured approach to product optimization in the presence of technological constraints

    Get PDF
    Geometrical optimization of structural components is a topic of high interest for engineers involved with design activities mainly related to mass reduction. The study described in these pages focuses on the optimization of plates subjected to bending for which stiffness is obtained by a pattern of ribs. Although stiffening by means of ribs is a well-known and old technique, the design of ribs for maximum stiffness is often based on practice and experience. Classical optimization methods such as topological, topographical and parametric optimization fail to give an efficient design with a reasonable programming effort, especially when dealing with many and complex constraints. These constraints are both technical and technological. A most promising technique to obtain optimal rib patterns was to define a set of feasible rib trajectories and then to select the subset with the most efficient combinations. The result is not unique and a method to select the optimal patterns is required. In fact, the stiffening effect increases with increasing rib length, but at a greater cost. A trade-off must be found between structural performance and cost: The tools to guide this selection process is the main objective of the paper, with particular attention in evaluating the stiffening due to the presence of beads on the plate with a close link with the production system and possible technological constraints which can occur during manufacturing processes, such as minimum rib distance or the presence of discontinuities or the presence of holes or other elements on the plate. A special tool with enforced rib cross section is considered, and optimal rib deployment has to be found. Numerical examples attached show the methodology and obtainable results. \ua9 2011 Springer-Verlag London Limited

    Vascular Proteomics Reveal Novel Proteins Involved in SMC Phenotypic Change: OLR1 as a SMC Receptor Regulating Proliferation and Inflammatory Response

    Get PDF
    Neointimal hyperplasia of vascular smooth muscle cells (VSMC) plays a critical role in atherosclerotic plaque formation and in-stent restenosis, but the underlying mechanisms are still incompletely understood. We performed a proteomics study to identify novel signaling molecules organizing the VSMC hyperplasia. The differential proteomics analysis in a balloon- induced injury model of rat carotid artery revealed that the expressions of 44 proteins are changed within 3 days post injury. The combination of cellular function assays and a protein network analysis further demonstrated that 27 out of 44 proteins constitute key signaling networks orchestrating the phenotypic change of VSMC from contractile to epithelial-like synthetic. Among the list of proteins, the in vivo validation specifically revealed that six proteins (Rab 15, ITR, OLR1, PDH beta, PTP epsilon) are positive regulators for VSMC hyperplasia. In particular, the OLR1 played dual roles in the VSMC hyperplasia by directly mediating oxidized LDL-induced monocyte adhesion via NF-kappa B activation and by assisting the PDGF-induced proliferation/migration. Importantly, OLR1 and PDGFR beta were associated in close proximity in the plasma membrane. Thus, this study elicits the protein network organizing the phenotypic change of VSMC in the vascular injury diseases such as atherosclerosis and discovers OLR1 as a novel molecular link between the proliferative and inflammatory responses of VSMCs.1133Ysciescopu

    Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using Tc-99m-HMPAO

    Get PDF
    Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with Tc-99m-HMPAO under physiologic conditions and monitored in vivo distribution of Tc-99m-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with Tc-99m-HMPAO for 1 hr incubation, followed by removal of free Tc-99m-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with Tc-99m-HMPAO, the radiochemical purity of Tc-99m-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in Tc-99m-HMPAO-ENVs. Tc-99m-HMPAOENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with Tc-99m-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with Tc-99m-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.114327Ysciescopu
    corecore